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a. Foreword and general remarks

This grant, as extended, covered a four year period (essentially 1977-1980).
In addition, as the principal investigator was out of the country (visiting at
the Universite de Nice for the academic year 1980- '81), preparation of this
final report has been somewhat delayed; since much of the work of this additional
half-year is based on and is a continuation of work done during the grant period,
the report actually includes work of 4 years. The bibliographical list presents
items in order of publication or expected publication, [I - r34 7, with some
brief annotation. The summary of results following that is in the form of
abstracts, prepared for this report.

During the grant period a total of 21 papers and reports (items [2- - [23]
noting the equivalence of [4 , [72) were prepared. Of these, 10 have already
appeared or have been accepted for publication in various journals while 8 others
(The 3 appearing in the annual Seminaires IRIA have, somewhat arbitrarily, been
counted with these.) are in conference proceedings. The remaining three are
a note [23] submitted but not yet accepted, a NASA report [8] and a book
chapter [22].

Investigation has focused on problems of observation and control for para-
bolic equations, primarily with interaction limited to the boundary of the
region. With considerable overlap, the items [1, - [34] may be classified under
six headings:

A. Basic theoretical questions on control of parabolic equations.

[1 1, [4 ), [5 7, [13 ], [14 ], [19 ], [21], [23 7, F24 ], [25 ], [26 , [34 1.

B. Problems of observation and identification for parabolic equations.

[1], [27, [3 1 [5 1, [ ], [112, [18 ], [22], [27], [33], [34].

C. Other system-theoretic problems.

[2 ,[4], [20 ], [32].

D. Problems and considerations (algorithms, regularity, etc.) related to approx-
imation and numerical computation.

[3],[5 ], [6 ], [11 ], [12 ], [13 J, 4], [16], [18 , [19 ], [22 ], r26 .

E. Ill-posed problems.

[6 1, [8 1, [9], [11,[163,[17], [187, [221, [27 ]

F. Problems involving nonlinear partial differential equations.

[103, J11 C,[12), E14 , L15 , [24 [27 ], [28 , r29 1, [30 , [311, r-33, r34].



As general observations, note the following:

(i) The original proposal focused on basic theoretical questions of observability
and controllability. Much of the published work is relatively abstract/
theoretical in style. Nevertheless, this work has been motivated by the possi-
bility of application (CII) is a particular case in point.) and, in parti-
cular, the heading D reflects a concern with considerations relevant to success-
ful numerical computation. It is this, of course, which.has led to the concerns
with regularity of optimal controls and with ill-posed problems.

(ii) There has been a gradual shift toward greater concern with nonlinear
problems. In part this reflects an attitude that the 'real' problems of
application are nonlinear. The work on linear problems, of course, remains
significant - not only as a model but because,(e.g., through linearization)
the linear results apply also to consideration of nonlinear problems.

(Iii) At present the most significant outstanding theoretical problem for the
linear case remains patch observability/controllability. From the practical
point of view, the outstanding problems are: (1) well-posedness of obser-
vation in the nonlinear case (for which this is no longer dual to exact
null-control ability), (2) improved algorithms for computation of controls and
stabilizing feedbacks including cases with constraints, (3) applications
related to variational inequalities of evolution including free boundary
problems, (4) realistic modeling of stochastic considerations.



b. Statement of some problems.

Consider a process governed by the parabolic equation:
(1) 6 + Au = f
where A is a second order elliptic operator - say

A = -6u or, more generally, Au = - 7 •aVu + qu
with specification of boundary data as
(2) u or u = i vavu or au + u on

VV
If (u V+ 8u) is specified, the complementary data is

(-Ou + au)/ ( 2 + p2)
V

Equations of the form (1) govern a wide variety of phenomena associated with
diffusion: heat conduction, diffusion of a solute, etc.

Distributed control: Select f so as to minimize a '-ost' of the form
(3) j= IIf,2+ All u Ai11

2 + ^ I2u(T) _  !2

A(using, say, appropriate L2 norms) with u a 'target trajectory' and x
a 'terminal target' given. The initial and boundary data are, here, also given.

Boundary control: Select boundary data q so as to minimize (3) with
c for f. In applications this is a typical problem as one often has no possi-
bility of interaction except at the boundary. Indeed, one's interaction may be
limited to a 'patch' on the boundary (i.e., Fa = 'active' boundary C aO,
with the constraint: cp= 0 on a Q\rp) and one speaks of 'patch control'.

a
Boundary observation: The equation and boundary conditions are assumed known
(e.g., homogeneous) but the initial state unknown. Given observation of
the complementary boundary data as well (possibly only on Fa - patch observation
one wishes to use this to determine the -tate u(T).

One speaks of (boundary) observability if this last is possible. It is
known - for linear problems (the corresponding problem for nonlinear equations
is an interesting target for future investigation) - that this well-posed if
and onl% if one has exact nullcontrollability: for each initial state there is
a control such that u(T) = 0.

In these contexts one seeks information on the existence and character-
ization of optimal controls, continuity of dependence on various aspects of
the problem and methods of approximate numerical computation. Major results
obtained during the grant period (1) extend the set of situations for which
nullcontrollability is known [], [5 ] ,

(2) characterize the optimal control [5], f19 1, r24 I and (3) consider aspects
(regularity, dependence, etc.) more-or-less directly related to computation
[5 J [14 .

Since the computational aspects lead to ill-posed problems - e.g., the
minimum norm boundary control from u(O) - w to u(T) = 4 does not depend
continuously on the target I - it has been relevant to consider general
computational aspects of ill-posed problems. Such problems also rise in connection



with system identification, e.g., determining the diffusion coefficient a

in specifying A above, or in connection with problems of determining

the input to a diffusion system from observation of the output C 31,F61,
[ 16, 18] . The Russian school (Tikhonov...) has been particularly
aCtive in developing computational approaches to ill-posed problems;

these have been of great importance in geophysical contexts.

Entirely independent of the above is a nonlinear diffusion-convec-
tion-reaction system arising in semiconductor theory but, with modifi-
cation, applying quite gnerally to contexts in which the convection is

determined by the electrostatic field which, in turn, is determined by

the (unknown) distributions of various charged species:

k " V • Jk 
=  Sk (k = 1,...,K)

where the 'currents' Jk are given by

Jk = ak k + ukVK
with 'drift velocities' Vkdetermined by the field E:

Vk = -qk ak E (qk = charge)

and E = -v' for a potential * given by the usual Poisson equation:

-, = N + 4 qk u (N=N(.) given).

Conservation of charge gives TkqkSk= 0.

A discussion of the interplay between theoretical and computational
considerations (for the steady state problem, specifically for a semi-

conductor device) appears in r12]. Major results [10, [30), [31
are on existence of solutions with related a priori estimates.

..
Pt. ~ . d
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[12] A nonlinear elliptic system arising in semiconductor theory, Seminaires
IRIA 1979 (Anal. et Cont. des Syst.), Rocquencourt, 1980, pp. 83-95.

(Discussion of [101 related to computational methods.)
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groups with distributed conditionis, Sminaires IRIA 1979 (Anal. et Cont.
des Syst.), Rocquencourt, 1980, pp. 97-105.
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[25 ] Two results on exact boundary control of parabolic equations. to

Appl. Math. Opt.

[26- Existence and regularity of extrema. to J. Math. Anal. Appl.

Results obtained and now being written (tentative titles):

27 ] Identification of the nonlinearity k(-) in ut=V-k (u) Vu from
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[283 Existence of solutions for certain semilinear equations.

[29] Coercivity estimates for a class of nonlinear elliptic operators.

r30 - A nonlinear parabolic system arising in semiconductor theory.
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[341 Partial Differential Equations.
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Work in progress:

Certain other lines of investigation have preceeded, during the grant

period and since, with some partial results although not to the more 'finished'
state of 273 - L331.
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d.) Summaries of principal results obtained; abstracts.

[iJ The principal result is that the heat equation ut = u

is exactly nullcontrollable for a region such as
indicated with boundary control restricted to the patch
Fa and vanishing on 60\ra . This shows, in particular
that Russell's 'hyperbolic - parabolic' principle is far
from reversible and that star-complementarity is far
from necessary for boundary control and observation of the
heat equation. For a general patch and general region such results remain
unproved but state prediction from such observations is shown to be well-
posed given an a priori bound on initial data.

[2] Let x(-) satisfy the linear equation Sc Ax + Bu and consider linear
observations of the form w = k Xi(k)(tk) (finite sum). An imprecise

observation vector w is given, each component of which is nominally of
this form (not necessarily linearly independent), and one seeks an opti-
mum (minimum norm) estimate of the input u(-). The equation and obser-
vations define a map: ( F,u()) t-# w : (initial data, input) V-# (exact
observation) and a suitable pseudo-inverse is to be constructed relative
to an indefinite inner product which ignores .

[3] Let u be known to satisfy a parabolic equation of the form:
ut  9 AVu = qu in (0,T) X " with u + on' AVu = 0 on

(O,T) X 60 and initial data u 0 . If uo and the coefficient set
a= (A,q,X, ) are (partially) unknown, one asks how they may be
determined using additional boundary observations. (The problems are, in
general, ill-posed and the computational considerations are further
explored in [6 1, [18 , [22 ]. )

[4 For general linear control systems, time-invariance of the reachable
set is a purely algebraic corollary of exact nullcontrollobility. The
result is formulated for time-dependent problems: Ks.t = (states at
time t reachable from x at time s) is independent of s,x for
s : r < t if every state at r is controllable to 0 at t. (This
generalizes a result of Fattorini and was used by Schmidt in proving the
bang-bang principle for boundary control of the heat equation.)

[51 Russell had shown that a uniform local decay rate implies boundary con-
trollability for the wave equation utt = Au and that this implies
corresponding controllibility for u = tu. An abstract version of this
is proved and applied to give controllability for a class of variable
coefficient hyperbolic and parabolic problems. The principal new results
for the parabolic case are: (I) a characterization of minimum norm null-
controls as complementary boundary data of the adjoint equation and (2)
continuous dependence of the optimal control (in HS((O,T') x8C2 for
0 <T" <T and weak in L2 ((0,T)>'6Q)) on the coefficients of the equa-
tion. (The first of these gives analyticity in t of optimal nullcon-
trols; compare [19). )

.~ .fl . ~f
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[6 ] A number of problems are discussed briefly. Principal new results are:
(I) an abstract result on computing solutions of linear problems with
convex constraints applied to optimal boundary control and (2) uniqueness

for some problems of identifying q in ut = U xx- qu

[7 1 See [4 3 .

[8] There is a considerable variety of approaches to ill-posed problems
(as geophysical inverse problems) which have significant differences in
method and interpretation based on varying assumptions regarding, e.g.,
the nature of the measurement uncertainties. This primarily expository
report compares various approaches to a posteriori interpretation of
imprecise, inadequate data and gives uncertainty estimates where possible.

[93 Let Ax = b be a linear problem (here presented abstractly). The
method of 'least squares' is often applied by writing x = ' ..k ek
(jek Ian orthonormal basis), taking enough terms k = 1 ... ,K

to permit good approximation and then determining xK=Y 1 kek to mini-

mize x-b !12 . For an ill-posed problem (A- ' unbounded) examples are

constructed for which an exact solution exists, exact computation is assumed

but fxK is unbounded as K is increased. Contrary to the situation

for well-posed problems, the approximation can get worse as more terms
are taken.

L0 A general reaction-diffusion-convection system for charged species is:
- 1'Dk[VUk+ qkUkV*3 = Sk  (k=l,... ,K

- = N + q
where qk is the charge and uk t e concentration of the k-th species and

* is the electrostatic potential. Under suitable hypotheses, existence of
solutions (with each uk positive) can be proved.

In particular, this applies to a specific system of semiconductor theory with
Dk  dependent on I V* I and Sk= -R given by the Shockley-Reed-Hall

model of recombination.

[Ill Let p= tp(t) be a thermal transient of interest and suppose one can
observe the output *(t ) = u(O,t) determined by the diffusion equation
ut = [DUxI X with u(l,t) = cp(t), ux(O,t) = 0 and some initial con-

dition u = uO. For D = D(x) or for D = D(u) analytic in u it is

shown that T is uniquely determined by exact knowledge of 0 . Some
computational algorithms for determining c from * are proposed

and convergence results stated. (This is related to the oroblem of deter-
mining temperature transients in a gun at firing; there D = D(x,u),
after taking polar coordinates.)

[121 The relation is given between the existence result of 10 1 and an
earlier paper (1972) on numerical computation. Since the result uses a

substitution vk = uk expEqk *, an explicit bound on uk in terms of

.........................



the voltage across the device requires estimating the solution of
- = X e - as X increases (compare [15'). A calculation is also

presented relevant to the question of bifurcation as voltage increases.

[13" It is shown that an infinite horizon optimal control problem has a re-
formulation as construction of a stabilizing feedback. In this form one
has a pure initial value problem giving a semigroup which is shown to be
holomorphic.

[14 " After a summary of the argument of 19 -, q.v., asymptotic estimates
are obtained as t _# 0 +,T- for the H ( 60)- norm of (t) where
is an optimal Neumann boundary control for the heat equation on
(0,T)X Q. Similar results are obtained for a semilinear equation. (These
estimates are related to the convergence rates obtainable in various

methods of numerical computation.)

r151 Generalizing an argument of [12 " for f(u) = e-u  it is shown that, for
f=e - h with h -l and convex, one has max luJ = (f- 1 (i/X)

as X - co. (For e-u this gives log X growth. An explicit solution,
discovered subsequently, shows that is sharp.)

[16 1 A comparison is given of numerical methods for computing optimal bound-
ary controls for the heat equation in three contexts: minimum norm controls
with no constraint or nonnegativity constraint (semi-constrained: (/ad
unbounded) and time-optimal controls with a given bound. The method
recommended in general was a projection method (FEM) with regularization.
An argument was given to show this projection method converged even with-
out regularization when applied to unconstrained nullcontrol. (Note:
The comparison did not include switching-point methods applicable, noting
the bang-bang principle, to certain time-optimality problems in one space
dimension.)

[173,[18] These were prepared originally in 1978, based on still earlier work,
and have been extensively distributed in report form. The principal
theoretical results F17) are: (1) a general convergence theorem for
approximations Fk(x) b to F(x) = b . (The correct notion of conver-

k k
gence Fk F is 'graph subconvergence' in Xw x Y : if (xkYk) in

graph (P.k) and xk .Z-x, yk_ Vy then (x,y) in graph (F).) and (2)

discussion, with error estimates, of the method of 'generalized inter-
polation', particularly in the linear case in Hilbert space (approxima-

tion xK to Ax = b given by < xK, A* j > = <bTj> for

j = l,...,K with xK in sp fA*f K )

The applications considered [18 2 are (1) the inversion of Nemytsky
operators(nonlinear back-substitution), (2) recovery of a diffused signal
(compare [11], written later) and (3) system identification for systems
governed by parabolic and functional differential equations (compare r3],
written earlier).



[19] Let u t + Au = 0 (e.g., A=-A), u ., or uv = p with given initial

data and suppose c is optimal, minimizing J 2 + xliu-aui 2

+,.tlu()- ! with the target trajectory u analytic in t. Then

is analytic in t as an H S (Q) - valued function (s as large as is
consistent with the regularity of a , u and the coefficients of A)
on a complex domain including the open real interval (0,T). This is also
true for L= - (exact control to & assuming this possible) and for

infinite horizon (stabilization) problems; compare [51, [133, [14].

[20 j A variety of situations can be modeled by this problem or more compli-
cated variants: one seeks to maximize the expected discounted return
associated with a choice between a 'gamble' with known success probability Po
and another with (unknown) probability p. Beginning with an assumed 0

distribution for p, one plays this so long as it provides the greater
expectation (with Bayesian update of the distribution). This is thus an
'optimal stopping time' problem with optimal strategy characterized by
the 'free boundary' separating the choice regions in parameter space.
An approximation is obtained for the free boundary.

[21 Consider, e.g., the trace t = ul r for eigenfunctions: -A u - u in
u V= 0 on an with I!ulI = 1. It is shown that 11II,11 is bounded below

if F is a large enough part of 30. For W = u IF and -Lu=ku, ul I. 0
one has 1lWJ)p a C%1) . The argument is an application of known results

in boundary control theory for utt = Au. Other related results are also

obtained.

[22] This is primarily expository, addressed to an audience of 'engineers'.
The discussion of computational approaches to problems of observation,
control and identification for parabolic equations focuses on the ill-posed
problems which may arise and the implications of this for computation.

23 One seeks to minimize J = jj~!! + Xllu (T)- ZI1 where ut= Au + f(u)on

Q = (0,T)X Q, u = cp on F= (O,T)><an and u(O) = c. Note that, even
for f =0, J(c) need not be finite for pEL 2 (E) and J is not lower
semi-continuous. Under suitable hypotheses on f, a technical trick -
apparently applicable also to a variety of other problems - shows that
if J(Vk Iuk)I is a minimizing sequence with ( Ck 'uk) - ( c* ,u,), then

(c ,u,) minimizes J admissibly (including the consideration of constraints.
not necessarily convex with respect to u ).

[24 Let ut + Au + f(u) = c with u(O) = 0, uI:= 0 and C to minimize

J rIp+XIIu !2+ 4Iu(T)- 42. Assume fI=g with O!g K. Then (1)

optimal controls exist, (2) p -. u is Frechet differentiable (This is
shown here only under dimension limitations: C]Rm with m < 10 for
A = -A , but has since been shown to hold in general.) and (3) if the



data u,w is 'small enough' and 2< X then the optimal (qP,,u,) is
unique and depends continuously on u,u and, in a certain sense, on f.
Boundary control is also considered.

[25 1 The first result is exact nullcontrollability by boundary control for
certain diffusion equations in one space dimension with time-dependent
coefficients; e.g., for ut = uxx - q(t,x)u on (0,T)x (0,I) provided

q is analytic in t (at t = 0) uniformly in xE(0,1). The second
result is that when a parabolic equation is shown to be exactly boundary
nullcontrollable (so there exists Cf: nitial data . optimal control to

give u(T) = 0), then log )Ifl = a(i1T) as T -, 0+; This shows how

much harder one must work to control quickly. Analogous results hold
for the dual observation problems.

[26 ' The principal result addresses the following difficulty which arises.
e.g., in justification of optimality conditions for control problems.
Given a minimum x of J: X - one may be able to justify differen-
tiability so J' (R) = 0 if one knows x E YC.X (regularity) while
the condition J'(5) 0, obtained formally, may imply xEY- e.g.,
if J' has the form y - K(y) with K:X4 Y. It is shown that this
circular argument may be rigorously justifiable, using Ekeland's
approximate variational principle.

77 1 Various nonlinear diffusion processes are governed by equations of the
general form u = 7.k(u) vu. (Examples of such problems are seepage
of water or oil underground and heat conduction with a temperature-depend-
ent coefficient.) To identify the particular nonlinearity k(.) from
boundary observations is, in general, an ill-posed problem. For 0 < k
analytic and Dirichlet data = p(x) (smooth but not constant),
observe the resulting flux = k(u) vu-n on (0,T)x 30. It is shown
that the pair (cp, * ) uniquely determines k('). (It is anticipated that
a similar result holds if the flux is specified and the trace observed.
Some specific numerical procedures may be included as well.)

r28 1 If f:R -+ IR is bounded above as r 4 w and below as r - and
if A provides a suitable maximum principle (e.g., A = - A with
bounded Dirichlet data), then Au = f(u) has a solution.

[29 3 Consider A:u - 7 . a(., IV u 1) 7u with ra(.,r) having suitable
growth properties. Coercivity estimates are obtained giving existence,
uniqueness and continuous dependence results for solutions of related
elliptic and parabolic problems. An example would be
a(.,r) = rf/[,c(" )+ ra'] with c > 0, 0 w EL 1 . An application given
is to generation of periodic eddy currents in an inhomogeneous nonlinearly
magnetic material.



F30 [31 1 The system governing diffusion and convection of hole and electron
concentrations, with Shockley-Reed-11all recombination, in a semiconductor
device (compare [10] for the steady state problem) is:

u - 7a u + uv$ -R,

v - - b Vvv- v 7 1= -R,

A *= N + i -v,

R = [uv- n 21/- , I = 'r ('u'v).

Existence results are obtained for positive solutions of this system. The
argument of [30 is for a,b, r constant, n2 = 1. The argument of '31
considers ab functions of x, 17ib and r =, (,,, ,!r,), aitho, .
under somewhat different hypotheses than in [10". It is anticipated that
this can be coupled with heat conduction and permits n = n(x), not constant.

[32 - For C closed and convex in a Hilbert space H and S a subspace
one considers when the nearest point to 0 in Crf S is also the nearest
point in C to some x E S '-. This is related to a representation theorem
for certain optimal control problems with constraints as, e.g., nonnegative
control.

[33 The determination of the state for a Stefan problem from observation
of the motion of the free boundary is a well-posed problem.

(34] A book in three main parts: (1) Elliptic Equations, (2) Parabolic
Equations, (3) Observation and Control of Parabolic Equations. The empha-
sic in (1) is on variational methods with applicability to nonlinear
problems. The emphasis in (2) is on semigroup methods and semi linear equa-
tions with inhomogeneous boundary conditions. Part (3) treats various
topics, concentrating primarily on boundary observation and control al;on,
the lines of [5 3,[13 ,tl9 f, f23], t24J, etc.




